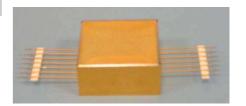


Space Voltage Controlled Crystal Oscillator


TE 200

VCXO Series 200

For this product, full and detailed specifications can be delivered on request. Specific request can be addressed to RAKON info@rakon.fr

Product Description

This ITAR free Space Flat Pack VCXO is featured by excellent pulling range of +/-70ppm, good ageing characteristics of +/-1 ppm per year, low power consumption of 0.15W, compact package size (20x20x13mm), and weight of 20g. The main applications are space synthesizers and transponders. These Space Flat Pack VCXOs are manufactured in accordance with MIL-PRF-55310 (Class 1, type 2, level S).

Features

Frequency Range: 10MHz to 40 MHz

Supply Voltage: +5V or +12V

• Low Consumption: 30 mA max

 Frequency Stability vs. Operating Temperature : from +/- 10ppm to +/-

15nnm

Ageing: +/- 5ppm over 15 years

• Output Wave Form : sine 50 Ohms

Output Level: from 0 to 8 dBm

Component selected as per ECSS-Q-ST-60C

Materials selected as per ECSS-Q-70

Manufacturing in accordance with:

o MIL-PRF-55310 (Class 1, type 2, level S)

o ECSS-Q-ST-70-08C and ECSS-Q-ST-70-38C

Applications

GPS receivers

Converters

Board calculators

- Synthesizers
- FGU

Specifications

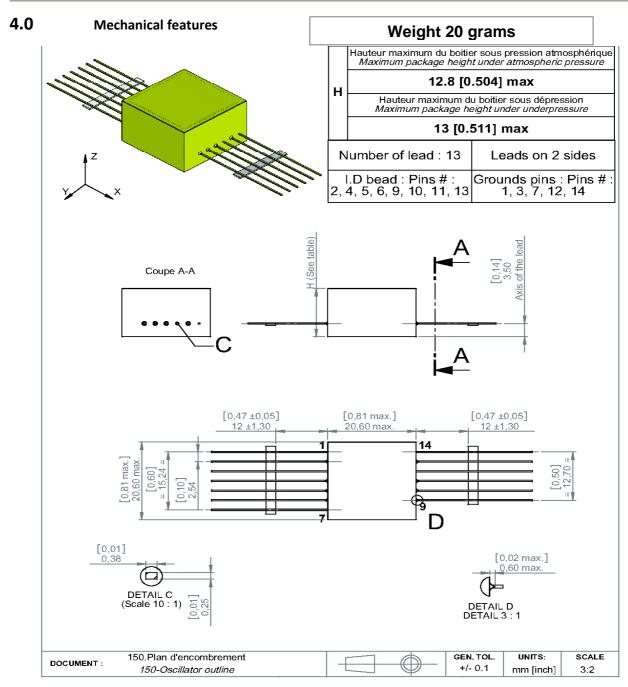
1.0 Environmental conditions

Line	Parameters	Conditions/remarks	Min	Nom	Max	Unit	
		Temperature option A	0	25	50	°C	
1.1	Operating Temperature	Temperature option B	-20	25	70	°C	
		Temperature option C	-40	25	85	°C	
1.2	Switch-on Temperature	TSo	-40		85	°C	
1.3	Non-Operating Temperature	TNOp	- 55		125	°C	
1.4	Random Vibration	Level as per MIL-STD-202), Method 214, Condition I-K (47,60 Grms)					
1.5	Sine Vibration	Level as per MIL-STD-202), Method 204, Condition D (20G)					
1.6	Shocks	Mechanical shock as per MIL-STD-202, Method 213, Condition E (half sine with a peak acceleration of 1000g for duration of 0.5 msec)					
1.7	Radiation	TID: 100 kRad, low dose rate No SEL up to LET=60 MeV/mg/cm²					

www.rakon.com

Space Voltage Controlled Crystal Oscillator

VCXO Series 200


2.0 Electrical interface

Line	Parameters	Conditions/remarks		Min	Nom	Max	Unit
2.1	Power supply	Supply option 1		4.75	5.0	5.25	V
		Supply option 2		11.4	12.0	12.6	V
2.2	Load Impedance			45	50	55	Ω
2.3	Control voltage			0		5	V
2.4	Adjustment Resistor	Radj	Calibration option A	0		10	$k\Omega$
			Calibration option B	NA	NA	NA	

TE 200

3.0 Performances

Line	Parameters	Conditions/Remarks		Min	Тур	Max	Unit
3.1	Nominal Frequency			10		40	MHz
3.2	Steady state input current power	(Rnom)				30	mA
3.3	Initial frequency accuracy	Calibration option A Rnom				± 1	ppm
3.4	Frequency adjustment	slop	Negative slope				
			RadjMin	+5			ppm
			RadjMax			- 5	ppm
3.5	Frequency control	Control voltage option A		±40			ppm
		Control voltage option B		±70			ppm
	Frequency stability vs	Temperature option A			± 10		ppm
3.6	temperature	Temperature option B			± 10		
		Temperature optio		± 15			
3.7	Frequency variation vs. supply voltage	Over Operating Temperature			± 0.5		ppm
3.8	Frequency variation vs. load	Over Operating Temperature			± 0.5		ppm
3.9	Frequency ageing	Over 1 years				± 1	ppm
3.10	Output waveform			Si	ne		
3.11	Output level			0			dBm
3.12	Harmonics level					- 30	dBc
3.13	Spurious level					- 80	dBc
3.14	Phase noise	noisefloor				- 145	dBc/Hz

5.0 Pin description

Line	Pin number	Name	Function		
5.1	1-3-7-12-14	GND	Electrical & Mechanical Ground		
5.2	2	Vcc	Supply Voltage		
5.3	4	Radj	Calibration option A Resistor Adjustment		
5.5	4	NC	Calibration option B Do not connect		
5.4	6	Vc	Control voltage input		
5.5	5-9-10-11	NC	Do not connect		
5.6	13	Fout	Frequency Output		

6.0 Model philosophy

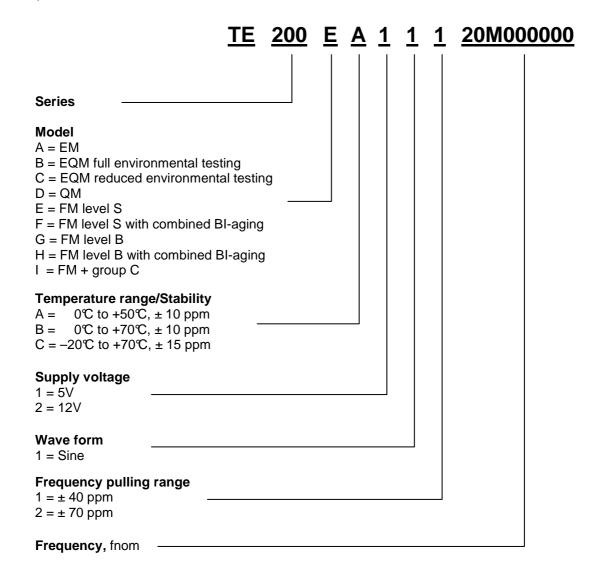
Representativeness	Engineering Model	Engineering Qualification Model	Qualification Model	Flight Model	Flight Model + Lot Acceptance test
	(option A)	(options B, C)	(option D)	(options E, F, G, H)	(option I)
Component	Passive commercial parts Active parts from the same manufacturer of HiRel parts	Mil Grade parts procured from the same manufacturer of HiRel parts	HiRel Parts	HiRel Parts	HiRel Parts
Crystal material	Swept quartz Stabilized	Swept quartz Stabilized	Swept quartz ESCC3501 Stabilized	Swept quartz ESCC3501 Stabilized	Swept quartz ESCC3501 Stabilized
Mechanical interface	Flight representative in form-fit- function	Flight representative in form-fit-function	Flight design	Flight design	Flight design
Electrical interface	Flight design	Flight design	Flight design	Flight design	Flight design
Tests	Acceptance testing	Qualification testing	Qualification testing (including screening)	Acceptanc e testing (including screening)	Acceptance testing (including screening)+ LAT
Workmanship	IPC610	ECSS-Q-ST-70-08 & 70-38	ECSS-Q-ST-70- 08 & 70-38	ECSS-Q- ST-70-08 & 70-38	ECSS-Q-ST-70-08 & 70-38

7.0 Flight Model Screening according to MIL-PRF-55310

- Full Level S (option E)
- Level S with combined burn in aging of 480 hours (option F)
- Full Level B (option G)
- Level B with combined burn in aging of 480 hours (option H)

Lot Acceptance test could be performed on all screening options

8.0 Options for Engineering Qualification Model


- Production manufacturing, qualification flow including qualification mechanical tests (option B)
- Production manufacturing, electrical tests only (option C)

9.0 Deliverable documentation

- Test data
- Full specification
- Certificate of Conformity (CoC)

10.0 Ordering part number definition

The part number breakdown is defined as follows:

